Jie Xu, Rodney J Nash, Teryl K Frey. Cellular responses to Sindbis virus infection of neural progenitors derived from human embryonic stem cells. BMC Research Notes 2014, 7:757 doi:10.1186/1756-0500-7-757.

...Standard immunocyto-fluorescence was performed. hNPCs grown on coated glass-coverslips (80% confluence) were fixed with 4% paraformaldehyde (Electron Microscopy Sciences) in PBS for 10 minutes at room temperature, rinsed twice with PBS and then permeabilized with 0.2% TritonX-100 diluted in PBS for 5–7 min. Primary antibodies used were directed against Nestin (a neural stem marker; 1:450; Neuromics), SINV-NSP (a SINV antigen, 1:100,Eptomics), active-caspase 3 (1:500; Cell signaling), and β-tubulin (cytoskeleton marker, 1:200, Abcam). Secondary antibodies were anti-rabbit/mouse Alexa Fluor 488 and anti-rabbit/mouse Alexa Fluor 594 (1:2000–4000; Molecular Probes-Invitrogen Life Technologies). Fluorescence images were acquired on a Zeiss Axioplan epifluorescence wide-field microscope and processed with AxioVision software. For each condition within the same experiment, at least 3 fields were analyzed. For image quantification, at least three fields in the same experiment were analyzed...Western Blot analysis was performed on cell lysates of hNPCs, either mock infected or SINV infected, at 4, 12, 24, 36, and 48 hours post infection, using protocols described previously [23]. Primary antibodies used were anti-GAPDH (1:5000; Abcam), anti-NF-kB p65 (1:200; Santa Cruz); anti-phospho-STAT3 (1:200; Cell signaling), anti-phospho-IRF3 (1:1000; Eptomics); anti-Nestin (1:500; Neuromics); anti-neuro-filament M (NF-M; 1:500; Neuromics); anti-Tuj1 (1:1000; Abcam); anti-PCNA (1:1000, Santa Cruz) and anti-cleavedcaspase 3 (1:1000; Cell Signaling). For quantification of western blot, films of immunoblot were scanned with a flat-bed scanner, and digital images were imported and quantified using Image J software [24]. Then, the intensities of bands were compared according to their grayscale (http://www.lukemiller.org/journal/2007/08/quantifying-western-blotswithout.html).

Yuji Kaneko, Hideki Shojo, Jack Burns, Meaghan Staples, Naoki Tajiri, Cesar V. Borlongan, DJ-1 ameliorates ischemic cell death in vitro possibly via mitochondrial pathway, Neurobiology of Disease, Available online 21 September 2013, ISSN 0969-9961, http://dx.doi.org/10.1016/j.nbd.2013.09.007.

...Cell culture and oxygen-glucose deprivation (OGD) hNPCs were obtained from Neuromics...

Xiugong Gao, Hsiuling Lin, Radharaman Ray, Prabhati Ray. Toxicogenomic Studies of Human Neural Cells Following Exposure to Organophosphorus Chemical Warfare Nerve Agent VX. Neurochemical Research. February 2013.

...Human hN2 neurons were obtained from Neuromics...

Xiufang Guo, Severo Spradling, Maria Stancescu, Stephen Lambert, James J. Hickman. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1. Biomaterials, In Press, Corrected Proof,Mar 2013.doi:10.1016/j.biomaterials.2013.02.061

...hNP1, were obtained from Neuromics (Edina, Minnesota)...

Mahesh C. Dodla, Amber Young, Alison Venable, Kowser Hasneen1, Raj R. Rao, David W. Machacek, Steven L. Stice. Differing Lectin Binding Profiles among Human Embryonic Stem Cells and Derivatives Aid in the Isolation of Neural Progenitor Cells. PLoS ONE 6(8): e23266. doi:10.1371/journal.pone.0023266

A. Young, D.W. Machacek, S.K. Dhara, P.R. MacLeish, M. Benveniste, M.C. Dodla, C.D. Sturkie and S.L. Stice. Ion channels and ionotrophic receptors in a human embryonic stem cell derived neural progenitors. doi:10.1016/j.neuroscience.2011.04.039.

...mouse nonoclonal anti nestin (neuromics), mouse monoclonal anti tuj-1 (neuromics)...

Adam D. Bachstetter, Jennifer Jernberg, Andrea Schlunk, Jennifer L. Vila, Charles Hudson, Michael J. Cole, R. Douglas Shytle, Jun Tan, Paul R. Sanberg, Cyndy D. Sanberg, Cesario Borlongan, Yuji Kaneko, Naoki Tajiri, Carmelina Gemma, Paula C. Bickford. Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation. PLoS ONE 5(5): e10496. doi:10.1371/journal.pone.0010496. 

...Cultures of human neural progenitors were maintained in culture following the supplier's protocol (HNP1, Neuromics, Edina, MN). Briefly, immediately after thawing, cells (4×104 cells/well) were seeded and grown in 96-well plate coated by poly-L lysine in Neurobasal media (GIBCO, CA) containing 2 mM L-glutamine, 2% B27 (GIBCO, CA) and 50 U/ml penicillin and streptomycin for 4 days at 37°C in humidified atmosphere containing 5% CO2. Human bone marrow cells or human CD34+ cells (All Cells, Inc.) were cultured in 96 well plates (5×104/well) containing 100 µL of complete medium (RPMI 1640 medium supplemented with 5% FCS). These cells were treated for 72 hours with spirulina at a wide range of doses (15 ng/mL to 500 ng/mL) or NT-020 (proprietary blend of blueberry (500 ng/ml), green tea (500 ng/ml), vitamin D3 as 25-hydroxycholcalciferol (5 uM) and carnosine (20 uM)) the previously published effective concentration [14]. Human recombinant TNFα 20 ng/ml (R&D Systems) was added to human neural cell cultures at the same time as the other treatments...

Kunlin Jin, XiaoOu Mao, Lin Xie, Veronica Galvan, Bin Lai, Yaoming Wang, Olivia Gorostiz, Xiaomei Wang and David A Greenberg. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. Journal of Cerebral Blood Flow & Metabolism (2009). doi:10.1038/jcbfm.2009.219.

Sujoy K. Dhara, Brian A. Gerwe, Anirban Majumder, Mahesh C. Dodla, Nolan L. Boyd, David W. Machacek, Kowser Hasneen, Steven L. Stice. Genetic Manipulation of Neural Progenitors Derived from Human Embryonic Stem Cells. TISSUE ENGINEERING: Part A. Volume 15, Number 00, 2009 ª Mary Ann Liebert, Inc. DOI: 10.1089=ten.tea.2009.0155

Saravanan Karumbayaram, Bennett G. Novitchb, Michaela Patterson, Joy A. Umbach, Laura Richter, Anne Lindgren, Anne E. Conway, Amander T. Clark, Steve A. Goldman, Kathrin Plath, Martina Wiedau-pazos, Harley I. Kornblum, William E. Lowry. Directed Differentiation of Human-Induced Pluripotent Stem Cells Generates Active Motor Neurons. Stem Cells Vol. 27 No. 4 April 2009, pp. 806 -811. doi:10.1002.

Neuromics Markers Referenced:

STEMEZ hNP1 Marker Host species Dilution Catalog#









Tuj 1 (Neuron-specific class III beta-tubulin)