

Ferrostatin-1

Data Sheet

Catalog Number:	MC11096	Product Type:	Small Molecule
Bio-Activity:	Ferroptosis inhibitor	CAS #:	347174-05-4
Research Categories:	Cell death, oxidative stress, cancer	Chemical Name:	Ethyl 3-amino-4-(cyclohexylamino)benzoate
Solubility:	Soluble in DMSO (up to 100 mg/ml) or in Ethanol (up to 100 mg/ml).	Molecular Formula:	C15H22N2O2
Purity:	> 98%	Molecular Weight:	262.35
Format:	Powder	Ship Temp:	Ambient
Storage:	Room Temperature		

Application Notes

Description/Data:

Inhibits ferroptosis (EC50=60 nM), an iron-dependent form of nonapoptotic cell death [1]. Potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices [1]. Blocks the cytotoxic effects of sorafenib in hepatocellular carcinoma cells [2]. Inhibits oxidative lipid damage and cell death in diverse disease models [3]. Prevents apoptosis of renal proximal tubular cells induced by reactive oxygen species [4].

References:

- 1) Dixon et al. (2012), Ferroptosis: an iron-dependent form of nonapoptotic cell death; *Cell*, 149 1060
- 2) Louandre et al. (2013), Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib; *Int. J. Cancer*, 133 1732
- 3) Skouta et al. (2014), Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models; *J. Am. Chem. Soc.*, 136 4551
- 4) Nowak et al. (2013), Protein kinase C- α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells; *Am. J. Physiol. Renal. Physiol.*, 305 F764

FOR RESEARCH USE ONLY

NEUROMICS' REAGENTS ARE FOR IN VITRO AND CERTAIN NON-HUMAN IN VIVO EXPERIMENTAL USE ONLY AND NOT INTENDED FOR USE IN ANY HUMAN CLINICAL INVESTIGATION, DIAGNOSIS, PROGNOSIS, OR TREATMENT. THE ABOVE ANALYSES ARE MERELY TYPICAL GUIDES. THEY ARE NOT TO BE CONSTRUED AS BEING SPECIFICATIONS. ALL OF THE ABOVE INFORMATION IS, TO THE BEST OF OUR KNOWLEDGE, TRUE AND ACCURATE. HOWEVER, SINCE THE CONDITIONS OF USE ARE BEYOND OUR CONTROL, ALL RECOMMENDATIONS OR SUGGESTIONS ARE MADE WITHOUT GUARANTEE, EXPRESS OR IMPLIED, ON OUR PART. WE DISCLAIM ALL LIABILITY IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED HEREIN OR OTHERWISE, AND ALL SUCH RISKS ARE ASSUMED BY THE USER. WE FURTHER EXPRESSLY DISCLAIM ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.-V2/08/2012