

Actinomycin D

Data Sheet

Catalog Number:	MC11101	Product Type:	Small Molecule
Bio-Activity:	Transcription inhibitor	CAS #:	50-76-0
Research Categories:	Cell death, cancer, infectious disease	Chemical Name:	Antibiotic produced by <i>S. parvulus</i>
Solubility:	Soluble in DMSO (up to 50 mg/ml).	Molecular Formula:	C62H86N12O16
Purity:	> 98%	Molecular Weight:	1255.4
Format:	Powder	Ship Temp:	Ambient
Storage:	-20°C (Protect from Light)		

Application Notes

Description/Data:

Cyclopeptide antibiotic and intercalating transcription inhibitor with anti-neoplastic activity. Potent inhibitor of RNA polymerase [1]. Induces apoptosis in a variety of cancer cell lines [2,3] via the intrinsic pathway [4]. Upregulates proapoptotic PUMA and downregulates Bcl-2 mRNA in peripheral blood lymphocytes [5].

References:

- 1) Wagner et al.(2013) RNA Polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA ; EMBO J. 32 781
- 2) J. Kleeff et al. (2000) Actinomycin D induces apoptosis and inhibits growth of pancreatic cancer cells; Int. J. Cancer, 86 399
- 3) Kasim et al. (2013) Live fluorescence and transmission-through-dye microscopic study of actinomycin D-induced apoptosis and apoptotic volume decrease ; Apoptosis, 18 521
- 4) Liu et al. (2016) Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis; Proc. Natl. Acad. Sci. USA, 113 10666
- 5) Kalousec et al. (2007) Actinomycin D upregulates proapoptotic protein Puma and downregulates Bcl-2 mRNA in normal peripheral blood lymphocytes; Anticancer Drugs, 18 763

FOR RESEARCH USE ONLY

NEUROMICS' REAGENTS ARE FOR IN VITRO AND CERTAIN NON-HUMAN IN VIVO EXPERIMENTAL USE ONLY AND NOT INTENDED FOR USE IN ANY HUMAN CLINICAL INVESTIGATION, DIAGNOSIS, PROGNOSIS, OR TREATMENT. THE ABOVE ANALYSES ARE MERELY TYPICAL GUIDES. THEY ARE NOT TO BE CONSTRUED AS BEING SPECIFICATIONS. ALL OF THE ABOVE INFORMATION IS, TO THE BEST OF OUR KNOWLEDGE, TRUE AND ACCURATE. HOWEVER, SINCE THE CONDITIONS OF USE ARE BEYOND OUR CONTROL, ALL RECOMMENDATIONS OR SUGGESTIONS ARE MADE WITHOUT GUARANTEE, EXPRESS OR IMPLIED, ON OUR PART. WE DISCLAIM ALL LIABILITY IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED HEREIN OR OTHERWISE, AND ALL SUCH RISKS ARE ASSUMED BY THE USER. WE FURTHER EXPRESSLY DISCLAIM ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.-V2/08/2012