Dopamine beta-Hydroxylase

Data Sheet

Catalog Number: RA24600

Product Type: Whole Serum

Host: Rabbit

Species Reactivity: Rat, Human, Bovine

Immunogen Sequence: Dopamine beta-Hydroxylase purified from bovine adrenal medulla.

Format: Lyophilized. 100 µl with 0.09% sodium azide as a preservative.

Applications:
- Immunofluorescence: 1:400-1:800
- Immunohistochemistry: 1:1,000-1,200 (biotin-streptavidin/HRP).

Dilutions listed as a recommendation. Optimal dilution should be determined by investigator.

Reconstitution:
Do not reconstitute until ready to use since the product is most stable when lyophilized. The product does not need to be cooled during shipping. For long-term storage, store lyophilized antibody until ready to use at -15º C or lower. Reconstitute with 100 µl of distilled or deionized water.

Storage: Maintain at +2-8ºC for 3 months or at -20ºC for longer periods. Stable for 1 year. Avoid repeated freeze-thaw cycles.

Application Notes

Tissue Preparation:
10 µm cryostats or 50 µm vibratome
• Fixative: 4% paraformaldehyde in 0.1M phosphate buffer, pH 7.4; 500 mL over ~ 20 min.
• Post Fixation: 1.5 hour at 4ºC in 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4.
Note: If needed, low levels of glutaraldehyde (0.1-0.3%) may be used in conjunction with paraformaldehyde.

Immunohistochemistry/Immunofluorescence:
1/1,000 - 1/2,000 diluted in 1.0% Sodium Metabisulfite/0.05 M PBS/0.3% Triton X100, pH 7.5. - Biotin/Streptavidin-HP detection. (Note: Sodium Metabisulfite is eliminated from the secondary antibody and streptavidin/HRP diluent). Incubate 18-24 hours at 2-8ºC. Detect using Bn-SA/HRP reagents at dilutions recommended by the manufacturer.

Description/Data:
Regulation of gene expression of dopamine beta hydroxylase (DBH) and tyrosine hydroxylase (TH), two of the catecholamine biosynthetic enzymes, by cyclic AMP, diacyl glycerol, and Ca2+ leads to increased neurotransmitter biosynthesis. Dopamine beta-hydroxylase catalyzes the conversion of dopamine to noradrenaline and is expressed selectively in noradrenergic and adrenergic neurons in the nervous system. The disruption of the DBH gene is thought to cause changes in development and behavior in certain models. Both DBH and the multiple regulatory pathways of DBH are of increasing research in many neurological diseases.

Image: Staining of DBH positive neurons in rat brainstem.

FOR RESEARCH USE ONLY

Neuromics Antibodies • 5325 West 74th Street, Suite 8 • Edina, MN 55439
phone 866-350-1500 • fax 612-677-3976 • e-mail: pshuster@neuromics.com

www.neuromics.com